CSCI 2570 Introduction to Nanocomputing

Reconfigurable Computing

John E Savage

Overview

- Introduction to reconfigurable computing.
- Reconfiguration at the nanoscale.

The Current Hardware Landscape

- Very large scale integration (VLSI) yields chips with lots of components
- The role of configurable chips is increasing.
 - Application specific integrated circuits (ASICs) allow engineers to design chips for manufacture from standard parts.
 - Field-programmable gate arrays (FGPAs) allow engineers to program a chip after manufacture.

Very Large Scale Integration (VLSI)

- > 100,000,000 transistors/chip today
- 2.5 x 10^{11} λ^2 units of area available on a chip.
 - λ = feature size (minimal wire width and separation) (λ = half-pitch)
 - 3D not fully exploited

CPUs and ASICs

- CPUs are expensive, carefully designed, general-purpose computing elements.
 - CPU speed has stopped doubling every 2-3 years
 - Future growth will be spatial and 3D

ASICs are

- Inflexible but efficient in area use
- Require long turn-around times
- Get designed once and then are manufactured

Reconfigurable Computers

- Computers in which the hardware can be reprogrammed during or just before execution.
- This 1960s concept was not used extensively until the amount of re-programmable hardware on a chip was large enough.

Why Use Reconfigurable Computing?

- CPUs have lots of general-purpose hardware
- Some hardware can be bypassed through reconfiguration.
 - Note: Reconfiguration introduces its own overhead
- In the nanoscale world, reconfiguration is needed to handle uncertainty and errors.

Field-Programmable Gate Arrays (FPGAs)

- Array of programmable logic cells and interconnect – horizontal and vertical busses connected by programmable switches.
- FPGAS may contain processors and RAM.
- FPGAs may use more power than ASICs

FPGA Applications

- Digital signal processing
- Internet routing
- Medical imaging
- Cryptography
- Computer vision

- Programmed logic arrays (PLAs)
 - AND/OR planes with programmable junctions
- Lookup tables (LUTs)
 - Small memories contain mappings defining binary functions.
- Logic cells
 - LUTs plus some memory and enabling logic

Programmed Logic Arrays (PLAs)

- Form minterms in AND plane
- Combine them in an OR plane.
- Simplification to sum-of-products possible.

Programmable Logic Lookup Tables (LUTs)

- FPGAs contain many LUTs
 - A LUT for k-input gates has register holding 2^k bits as well as a multiplexer that selects one bit based on the value of the k inputs.

X	у	Z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Logic Cell

 A typical logic cell has one LUT, a D-type flipflop and a 2-1 mulitplexer to circumvent the flip-flop, if desired.

Example of Programmable Interconnect

- Set d₁ and d₂ so that H₃^L is sent to either V₂^T, H₃^R, or V₂^{B.}
- Add flip-flops to hold values of d₁ and d₂.
- Repeat at many intersections.

PLA Tile

K-LUT (k = 4) with optional output flip-flop

Tile has LUT and programmable interconnect

Reconfigurable Computing

CSCI 2570 @John E Savage

Programmable Interconnect Dominates Area in FPGAs

Mapping of Hardware Descriptions to FPGAs

- Write program in hardware design language (HDL)
 - HDL uses logical expressions and registers (arrays of flipflops)
- HDL translated to register transfer level (RTL) descriptions
 - Circuits and control signals for registers
- RTL descriptions are mapped to hardware so as to minimize either area, speed, or power.

Mapping of Hardware Descriptions to FPGAs

- Placement problem: map gates and flipflops to specific FPGA cells.
- Routing problem: choose paths for wires between gates and flip-flops.
- These are NP-hard problems.
 - Regular FPGA structure introduces inefficiencies
- Other issues: design verification, fault testing

Design Issues

- For what type of problems are FPGAs best?
- What granularity is appropriate for logic cells?
- How flexible should the switchboxes be?
- How wide should the busses be?
- What other components should be on chip?
- How efficient are FPGAs relative to ASICs and custom design?

- 100,000s of LUTs
- Memories and processors embedded
 - Data rates of 10 Terabits bandwidth 10-100 x
- Clock rate is 100s of MHz
- Will continue to get bigger but speed not likely to increase

- Adapt to defects and ageing faults
 - Reload configuration data for FPGA after fault detection.
 - Cosmic rays can erase bits while FPGA in earth orbit
- Provide computational flexibility
 - Change specialized functions on the fly
 - Performance improvement is goal.
- Design and reconfiguration can be simplified if appropriate computational model is used.
 - What models are best adapted to nanoscale systems?

Molecular-Scale Reconfigurable Arrays

 Arrays of configurable nanowire (NW) crossbars.

 A NW crossbar can be used as a memory, PLA, or interconnect.

Nanoscale PLAs

Reconfigurable Computing CSCI 2570 @John E Savage 25

Nanoscale PLAs

- Crossbars will play a central role
- Each row can act as a wired-OR.

Fig. 5. Logical diode crossbar formed by crossed NWs.

Role of Inversion (NOT)

Needed to boost signal strength.

- Needed for a complete logical basis
 - Can't get all Boolean functions with AND & OR.
- Inverters are hard to "place" at nanoscale.
 - Lightly-doped regions spaced out on NWs.
 - NWs placement via "floating" results in random alsignment with mesoscale wires

- Material assembly will be statistical.
 - NW addresses will be unknown in advance and must discovered
- Faults will be common.
 - Permanent defects: can program around, perhaps
 - Transient faults: require redundancy or rollback
 - Ageing faults: require monitoring and adaptation

Conclusions

- Reconfigurable computing a rich subject.
- Reconfiguration at the nanoscale is desirable but introduces novel problems.